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ARTICLE INFO ABSTRACT

Keywords: Ethnopharmacological relevance: Clausena excavata Burm.f. is used locally in folk medicine for the treatment
Clausenidin of cancer in South East Asia.

Apoptosis Aim of the study: To determine the mechanism of action of pure clausenidin crystals in the induction of

Liver cancer
MMP

Bel 2

Bax

hepatocellular carcinoma (hepG2) cells apoptosis.

Materials and methods: Pure clausenidin was isolated from Clausena excavata Burm.f. and characterized
using 'H and '>C NMR spectra. Clausenidin-induced cytotoxicity was determined by MTT assay. The
morphology of hepG2 after treatment with clausenidin was determined by fluorescence and Scanning
Electron Microscopy. The effect of clausenidin on the apoptotic genes and proteins were determined by real-
time qPCR and protein array profiling, respectively. The involvement of the mitochondria in clausenidin-
induced apoptosis was investigated using MMP, caspase 3 and 9 assays.

Results: Clausenidin induced significant (p < 0.05) and dose-dependent apoptosis of hepG2 cells. Cell cycle
assay showed that clausenidin induced a G2/M phase arrest, caused mitochondrial membrane depolarization
and significantly (p < 0.05) increased expression of caspases 3 and 9, which suggest the involvement of the
mitochondria in the apoptotic signals. In addition, clausenidin caused decreased expression of the anti-
apoptotic protein, Bcl 2 and increased expression of the pro-apoptotic protein, Bax. This finding was confirmed
by the downregulation of Bcl-2 gene and upregulation of the Bax gene in the treated hepG2 cells.
Conclusion: Clausenidin extracted from Clausena excavata Burm.f. is an anti-hepG2 cell compound as shown
by its ability to induce apoptosis through the mitochondrial pathway of apoptosis. Clausenidin can potentially be
developed into an anticancer compound.

1. Introduction The leaves, twigs, and barks of C. excavata have long been used in
Asian folk medicine (Wu and Furukawa, 1982; Takemura et al., 2000).

Clausena excavata Burm. f. is a wild shrub from the Rutaceae In Thailand, C. excavata extracts are traditionally used in the treat-
family found predominantly in South and Southeast Asia (Huang et al., ment of cancers (Perry and Metzger, 1980; Manosroi et al., 2004;
1997; Manosroi et al., 2004). The plant commonly is known as Cherek Arbab et al., 2013). Other uses of the extracts include for the treatment
Hitam in Malaysia and San Soak in Thailand (Manosroi et al., 2004). of colds, dermatopathy, snake bites, malaria, HIV, and abdominal

Abbreviations: RPMI, Rosewell Park Memorial Institute; HepG2, liver hepatocellular carcinoma; DNA, Deoxyribonucleic acid; DMSO, Dimethyl sulfoxide; JNK, c-Jun N-terminal
kinases; MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium bromide; Apaf-1, Apoptotic protease activating factor-1; qPCR, quantitative polymerase chain reaction; SEM,
Scanning electron microscopy
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Fig. 1. Chemical structure of clausenidin.

pains (Wu et al., 1994; Kongkathip et al., 2005).

Coumarins and carbazole alkaloids are the major components of C.
excavata. The coumarins are classified, according to chemical struc-
ture, as simple coumarins, furanocoumarins, pyranocoumarins, bis-
coumarins, triscoumarins, and coumarino lignans. Clausenidin (Fig. 1),
a member of the pyranocoumarin family, was shown to cause sig-
nificant cytotoxicity to several cell lines (Su et al., 2009).

Liver cancer is the leading cause of cancer deaths after colon and
lung cancers. According to the World Health Organization estimates for
2012, liver cancer alone accounted for 745,000 deaths worldwide
(WHO, 2015). Liver cancer is the leading cause of cancer deaths
among men and the sixth leading cause of death among women. Over
80% of liver cancer deaths occur in developing countries and the
disease is becoming more rampant in Asia and sub-Saharan Africa than
in other regions of the world (Bakiri and Wagner, 2013). Liver cancers
occur in various histological forms with hepatocellular carcinoma
(HCC) as the most dominant form accounting for 70-85% of all liver
tumors (Ferlay et al., 2010; Nordenstedt et al., 2010). Therapeutic
options for liver tumors are limited and survival after diagnosis is poor
(Bakiri and Wagner, 2013) because the tumor is relatively insensitive
to current chemotherapeutics.

Natural products may provide the much needed effective alternative
therapeutic compounds with minimal side-effects. Among anticancer
compounds of natural origin are flavonoids, polyphenols, and chal-
cones that have been shown to exhibit in vitro effects against hepG2,
HL60 and MDA-MB-231 cell lines. These compounds do not only cause
cancer cell toxicity but caused sustained growth inhibitory effects
(Fahey and Stephenson, 2002; Tuchinda et al., 2002; Yun et al.,
2006; Jing et al., 2010; Isa et al., 2013; Zhang et al., 2014).

Table 1
Gene name and sequences of primers used in the multiplex panel.
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Xanthyletin, dentatin, clausenolide 1-methyl ether, and clausenarin
isolated from C. excavata have also been screened and found to be
toxic to several cancer cell lines (Sharif et al., 2013). The current study
aimed to determine the effect of clausenidin on the HepG2 cell line.
This study, for the first time, describes the toxic effect of clausenidin on
hepG2 cells and the mechanism associated with its anti-cancer cell
effect.

2. Material and methods
2.1. Plant material collection

Fresh roots of Clausena excavata Burm.f., identified by Dr Shamsul
Khamis, were collected from the Agricultural park, Institute of
Bioscience, University Putra Malaysia. A voucher identification number
of 2991/16 was assigned to the plant. Approximately 2 kg of the root
were cut into thin slices and air-dried for two weeks. The dried sample
was ground to fine powder prior to extraction.

2.2. Extraction and isolation of compound

The ground powder was extracted with analytical grades chloroform
and methanol at room temperature. The ground powder was soaked in
10 L chloroform for 3 days and sieved with a 0.45 um filter paper to
collect the extract. The remaining residue was brought to dryness and
soaked in 10 L of methanol for another 3 days followed by sieving to
collect the extract. The crude extract was concentrated in a rotary
evaporator at 45 °C under reduced pressure to obtain the dried extract
before further purification. The yield of the extracts were calculated as
follows:

Yield (%)=(Weight of extract/weight of fresh plant)x100.

2.3. Column and thin layer chromatography

The chloroform extract was chosen for further purification since it
was found to be more cytotoxic than the methanolic extract.
Chromatography was performed on a glass column (36x3.5 cm) packed
with silica gel of particle size 0.04—0.06 mm. A mixture of hexane-ethyl
acetate of increasing polarities was used for the column elution (mobile
phase). More than 20 fractions were eluted and subjected to thin layer
chromatography (0.25 mm thick plate) (Merck). Fractions 10-16
produced similar TLC profiles and melting points of 135-137 °C; thus
they were pooled and concentrated in a rotary evaporator at 45 °C
before purification.

2.4. Identification and characterization of clausenidin

The Electron Impact Mass Spectra (EIMS) was recorded on
Shimadzu GCMS-QP5050A spectrometer. 'H NMR spectra were

Gene name Forward sequence

Reverse sequence

Bax AGGTGACACTATAGAATAGCAAACTGGTGCTCAA

Bcl-2 AGGTGACACTATAGAATACTGTGGATGACTGAGTACCT
Apaf-1 AGGTGACACTATAGAATACATACTCTTTCACCAGATCA
JNK AGGTGACACTATAGAATACAGAAGCTCCACCACCAAAGAT
Cytc AGGTGACACTATAGAATAGAGCGAGTTTGGTTGC
Caspase 3 AGGTGACACTATAGAATATGTAGAAGAGTTTCGTGAGT
Caspase 9 AGGTGACACTATAGAATAGCTGGTGGAAGAGCTG

B-actin AGGTGACACTATAGAATAGATCATTGCTCCTCCTGAGC

GTACGACTCACTATAGGGAAACCACCCTGGTCTTG
GTACGACTCACTATAGGGATCAGAGACAGCCAGGAG
GTACGACTCACTATAGGGAACAAGTTCTGTTTTTGCTTT
GTACGACTCACTATAGGGAGCCATTGATCACTGCTGCAC
GTACGACTCACTATAGGGAAAATCTTCTTGCCTTTCTC
GTACGACTCACTATAGGGAGAGTTTTCAGTGTTCTCCAT
GTACGACTCACTATAGGGACTCTAAGCAGGAGATGAACA
GTACGACTCACTATAGGGAAAAGCCATGCCAATCTCATC

The B-actin gene was used for normalization. Reverse transcription (RT) and PCR were done according to manufacturer's instructions; RT reaction was at 48 °C for 1 min; 37 °C for
5 min; 42 °C for 60 min; 95 °C for 5 min; then held at 4 °C, while PCR conditions were as follows: initial denaturation at 95 °C for 10 min, followed by two-step cycles of 94 °C for 30 s
and 55 °C for 30 s, ending in a single extension cycle of 68 °C for 1 min. Bax=Bcl-2-associated X protein; Bcl-2=B cell lymphoma 2; Apaf-1=Apoptotic protease activating factor 1;
JNK=c-Jun N-terminal kinases; Cyt C=cytochrome complex; Caspase 3=Cysteine aspartic acid protease 3; Caspase 9=Cysteine aspartic acid protease 9.
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Fig. 2. EIMS spectrum of purified clausenidin.

Table 2
H, 3C and HMBC NMR Data for clausenidin in CDCl; (500 and 125 MHz; respectively,
& in ppm, J in Hz).

NO &H 8C HMBC
1
2 160.6
3 6.11 (d, J=9.5 Hz, 1 H) 110.6  C-2 (%), C-4a ()
4 7.99 (d, J=10 Hz,1 H) 138.5 C-2 (), C-5 )
4a 103.1
5 12.94 159.9  C-4a (3J), C-5 (%)), C-6 (*J)
6 103.9
7 158.9
8 114.4
8a 158.9
9 198.2
10 2.72 (s, 2H) 47.6  C-6, (3J), C-9 (3N, C-11 (3)), C-12
Gn, c-13 3
11 80.0
12 1.46 (s, 3H) 26.4  C-9 (YD), C-10 (), C-11 (%), C-13
én
13 1.46 (s, 3H) 26.4  C9 (), Cc-10 3J), C-11 (3, C-12
én
1’ 40.9
2’ 6.19 (dd, J=17 and 9.5 Hz, 149.5  C-1’ (3)), C-4' (%)), C-5'C3J), C-8
1H) én
3’ 4.85(dd, J=17 and 10 Hz, 108.3 C-1’ (3J), C-2’ (),
2H)
4 1.59 (s, 3H) 294 C-1' (3, C-2'CD, C-3' (*N), C-8
én
5’ 1.59 (s, 3H) 294  C-1' (3)), C-2' (3)), C-3' (), C-8
én
100
Y = $— —
|
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Fig. 3. Viability of hepG2 cells after treating with clausenidin for 72 h. The ICsq of
clausenidin and doxorubicin is 7.7 + 0.29 ug/mL and 5.3 + 2.19 pug/mL respectively as
determined from the plot.

recorded on Varian NMR system (500 MHz, USA). 3¢ spectra were
obtained on the same Varian NMR instrument operating at 125 MHz
while the melting point was obtained using a Barnstead melting point
apparatus.
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2.5. Cell viability assay

Human hepatocellular carcinoma (HepG2) cells were obtained
from the American Type Culture Collection (ATCC, Va, USA). The cells
were maintained in RPMI-1640 medium supplemented with 10% fetal
bovine serum (FBS). Approximately 5x10° cells were seeded into each
well of a 96-well plate and incubated overnight. The cells were then
treated separately with increasing concentrations of clausenidin and
doxorubicin (positive control). After 72 h, 5 mg/mL MTT solution were
added to determine cell viability as described previously (Syama et al.,
2013). The results were expressed as percent cytotoxicity at 72 h
exposure to test agents.

2.6. Morphological assessment of apoptotic cells by acridine orange
(AO) and propidium iodide (PI) double staining

Clausenidin-induced hepG2 cell death was monitored by acridine
orange (AO) and propidium iodide (PI) double-staining method
according to standard procedures. The cells (10° cells/well) were
seeded in a 6-well plate and incubated overnight. The cells were then
treated for 24 h with 5, 15, and 30 ug/mL clausenidin, harvested, and
washed with PBS, centrifuged at 1000xg for 5 min, and the super-
natant discarded. The washing procedure was repeated twice to remove
traces of media. Ten microliters of fluorescent dyes containing 10 mg/
mL AO and 10 mg/mL PI were added to the cell pellet. A drop of
freshly stained cell suspension was placed on a glass slide, covered with
a cover slip and observed under fluorescent microscopy within 30 min
before the fluorescence fades.

2.7. Scanning electron microscopy

To prepare for scanning electron microscopy (SEM), the hepG2
cells were seeded at a density of 10° cells/T-25 mL flask and incubated
overnight. The cells were then treated with the IC5q (7.7 ug/mL) of
clausenidin for 48 and 72 h while those treated with 0.1% (v/v) DMSO
served as the negative control. The cells were harvested and washed
with PBS before fixing with 4% glutaraldehyde for 24 h followed by 1%
osmium tetroxide at 4 °C for 2 h. The cells were then washed three
times with 0.1 M sodium cacodylate buffer and dehydrated with
increasing acetone concentration from 30% to 99.9%. The cells were
then coated with gold in a sputter coater before viewing under the JSM
6400 scanning microscope.

2.8. Cell cycle analysis by flow cytometry

The hepG2 cells were seeded at 10°cells/T-25 mL flask in RPMI
media and incubated overnight and then treated with the ICsq (7.7 pg/
mL) of clausenidin for 24, 48 and 72 h. Cell treated with 0.1% (v/v)
DMSO served as the negative control. Harvested cells were washed
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Fig. 4. Acridine orange and propidium iodide-stained hepG2 cells treated with clausenidin for 24h (A) Untreated cells and cells treated with (B) 5 (C) 15, and (D) 30 pg/mL clausenidin.
VC=viable cells, MB=membrane blebbing, CC=chromatin condensation, AP=apoptosis, and SN=secondary necrosis. 100x Magnification.

with PBS. Cell cycle assay was performed using BD cell cycle reagent
(CycleTest™ Plus DNA reagent kit, Becton Dickinson, Belgium) and
flow cytometry.

2.9. Annexin V assay

HepG2 cells were seeded at 2x10°cells/T-25 mL flask in RPMI
media and incubated overnight before treating with the IC5q (7.7 pg/
mL) of clausenidin or 0.1% (v/v) DMSO (control) for 24, 48 and 72 h.
The cells were harvested, washed with PBS and subjected to Annexin V
assay using the FITC annexin V assay kit (BD Pharmingen, USA) and
flow cytometry.

2.10. Mitochondrial membrane potential (MMP) assay

Mitochondrial membrane potential assay was performed to deter-
mine mitochondrial membrane integrity. HepG2 cells were seeded in a
6-well plate at 5x10° cells/well, incubated overnight and then treated
with 5, 15, 30, and 40 pg/mL clausenidin. The negative control cells
were treated with 0.1% (v/v) DMSO. The assay was performed using
the BD™ Mitoscreen kit (BD biosciences, US) and flow cytometry.

2.11. Caspases 3 and 9 assays

Caspases 3 and 9 activities were determined using the colorimetric
method (Genscript Colorimetric Assay kit, USA). Cells were initially
seeded in a 6-well plate at 10° cells/well overnight. The cells were
treated for 24 h with 5, 15, 30, 40 and 50 ug/mL clausenidin and
caspases 3 and 9 assays performed. Negative control cells were treated
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with 0.1% (v/v) DMSO. After completion of reaction, the plates were
read on microplate reader at 405 nm.

2.12. RNA isolation

RNA extraction was basically done to determine gene expression.
HepG2 cells in a 6-well plate containing 10° cells/well were treated
with the ICsq (7.7 ug/mL) of clausenidin and 0.1% DMSO (negative
control) for 12 and 24 h. After detachment with trypsin the cells were
harvested and washed with PBS. RNA was extracted using the Total
RNA extraction kit (GF-1 TRE kit, Vivantis technologies), and quanti-
fied using a nanodrop spectrophotometer at 260 nm.

2.13. RT-qPCR

The reverse transcriptase quantitative PCR (RT-qPCR) was carried
out according to the GenomeLab GeXP Kit (Beckman Coulter, USA)
protocol, in an XP Thermal Cycler (Bioer Technology, Germany). PCR
products were finally analyzed in the GeXP genetic analysis system and
the results normalized using the Express Profiler software. The primers
for the genes of interest and housekeeping gene (Table 1) were
designed on the NCBI website and purchased from Biosune
(Shanghai, China), while the internal control (Kanr) from Beckman
Coulter (USA).

2.14. Protein profile array

Apoptosis-related protein profile array analysis (Table 3) was done
to determine the effect of clausenidin treatment on hepG2 cells.
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Fig. 5. HepG2 cells treated with 7.7 pg/mL clausenidin. (A and B) Intact control cells, (C) membrane blebbing and cytosolic shredding observed after 48 h, (D) membrane blebbing,
cytosolic shredding, and apoptotic body formation after 72 h. VC=viable cells, MB=membrane blebbing, CS=cytosolic shredding, AP=apoptotic body.

Determination of HepG2 cell protein expression was done using a
proteome profiler antibody array kit (R & D systems, USA). The cells
were seeded overnight at a density of 10° cells/well and treated with
the ICsq (7.7 pg/mL) of clausenidin for 24 h. The negative control cells
were treated with 0.1% (v/v) DMSO. Proteins were quantified using the
Bradford's assay. Primary antibody-coated membranes were incubated
with 200-400 ug/mL protein samples overnight at 4 °C. The mem-
branes were then washed with wash buffer before incubating with the
secondary antibody conjugated with horse radish peroxidase, for
30 min on a rocking platform. The membranes were again washed
and the chemireagent mixture slowly added to allow for an even spread
over the membrane surface. The images were then captured on a
chemidoc (Biorad, USA) imaging system and analyzed using the image
lab software 5.

2.15. Statistical analysis

Data are presented as mean + standard deviation. One-way Analysis
of Variance (ANOVA) using SPSS 22 software (SPSS Inc, Chicago IL,
USA) was used to determine significant difference between means at
95% confidence interval (p < 0.05).

553

3. Results
3.1. Purification and characterization of clausenidin

The yield of chloroform extract was 0.3%. The EIMS spectrum
(Fig. 2) gave a molecular peak at m/z 328 confirming the molar mass of
clausenidin reported by a previous study (Wu, 1982). The melting
point of 135-137°C and the NMR data (Table 2) of clausenidin
obtained in this report are similar to that reported earlier (Wu, 1982;
Huang et al., 1997).

3.2. Cell viability and cytotoxicity assay

Clausenidin-induced hepG2 cell death was dose-dependent. The
ICs of pure clausenidin on hepG2 cells at 72 h was 7.7 £ 0.29 pg/mL.
Doxorubicin-induced hepG2 cell toxicity was also dose-dependent with
ICs0 of 5.3 £2.19 pg/mL (Fig. 3).

3.3. Fluorescent microscopy

The hepG2 cell death increased with increase of clausenidin
concentration (Fig. 4). Treated hepG2 cells show distorted morphology
characterized by membrane blebbing and chromatin condensation,
which are features of apoptosis. In addition, some of the cells went into
secondary necrosis.
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Fig. 6. DNA content of hepG2 cells treated with 7.7 ug/mL clausenidin. (A) Untreated control, and at (B) 24, (C) 48, and (D) 72 h of treatment. (E) Distribution of cells according to cell
cycle phase. *For each cell cycle phase, means significantly (p < 0.05) different from control.

3.4. Scanning electron microscopy (SEM)

Fig. 5 shows early apoptosis of hepG2 cells characterized by
membrane blebbing. With treatment time, cytosolic shredding in-
creased in intensity.

3.5. Cell cycle analysis

Cell cycle analysis, showed that hepG2 cells treated with clausenidin
entered a G2/M phase arrest (Fig. 6). Consequently, the proportion of
cells in the resting GO/G1 phase decreased significantly (p < 0.05) while
those in subG0/G1 (apoptotic cells) increased significantly (p < 0.05)
after 72 h of clausenidin treatment.

3.6. Annexin V assay
The DNA content, as a measure of cell viability, showed significant

(p < 0.05) decrease in viable cells while there were significant (p < 0.05)
increases in early and late apoptotic cells after 48 and 72h of
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clausenidin treatment (Fig. 7).

3.7. Mitochondrial membrane potential

The fluorescent intensity produced upon treating hepG2 cells with
clausenidin is a measure of mitochondrial membrane potential (MMP).
Clausenidin treatment caused membrane depolarization of the hepG2
cells (Fig. 8). The rate of mitochondrial membrane depolarization is
directly proportional to the concentration of clausenidin used in the
treatment.

3.8. Caspases 3 and 9 assay

Fig. 9 shows that clausenidin, as indicated by the fold change,
induces a significant (p < 0.05) increase in hepG2 cell caspases 3 and 9
activities that is proportional to clausenidin concentration.
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3.9. Gene expression studies

There was significant (p < 0.05) increases in Apaf-1, JNK, cyto-
chrome ¢, Bax, and caspases 3 and 9 gene expressions in hepG2 cells
after treatment with clausenidin (Fig. 10A and B). Increases in bax and
caspases 3 genes began at 12 h after clausenidin treatment.

3.10. Protein profile assay

Bax, cytochrome c, and cleaved caspase 3 protein expressions in
hepG2 cells significantly (p <0.05) increased with clausenidin treat-
ment (Fig. 11). Conversely, Bcl-x, Bel-2, and pro-caspase 3 protein
expressions significantly (p < 0.05) decreased with treatment (Table 3).
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4. Discussion

Several compounds from tropical plants have been shown to induce
cancer cell toxicity either directly or by modulating cell biochemical
pathways (Singh et al., 2003; Kintzios and Barberaki, 2004). In this
study, we showed that clausenidin induced dose-dependent toxicity
and apoptosis of hepG2 cells. We suspect that the effect of clausenidin
is due to the presence of the two carbonyl groups in the pyranocou-
marin rings of the compound. This is because most cytotoxic natural
compounds appear to contain carbonyl groups in their basic structures.
Besides, clausenidin, being a moderately sized molecule (Fig. 1), can
easily enter tumor cells.

Apoptosis is the mode of cell death targeted in the development of
anticancer compounds (Fesik, 2005). With that objective, we showed
that anti-hepG2 cell effect of clausenidin is primarily through the
induction of mitochondrial apoptotic pathway. The anticancer cell
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Fig. 9. Caspases 3 and 9 activities in hepG2 cells treated with clausenidin. *For each
caspase, means significantly (p < 0.05) different from control.

effect increased with increase in clausenidin concentration. Most of the
treated hepG2 cells showed the typical characteristics of apoptosis to
include membrane blebbing, chromatin condensation, apoptotic body
formation (Majno and Joris, 1995, Kroemer et al., 2005) However, a
small percentage of clausenidin-treated hepG2 cells underwent necro-
sis.

Cell cycle regulation is an integral event for normal cell division
(Mohan et al., 2010) while the induction of cell cycle arrest and
apoptosis in cancer cells are hallmarks of anticancer drugs (Kummalue
et al., 2007). Many natural compounds can trigger cell death through
the modulation of the cell cycle (Gonzalez-Sarrias et al., 2012). Our
study reveals that clausenidin influenced the hepG2 cell cycle by
causing growth arrest at the G2/M phase. There was also significant
shift of treated hepG2 towards the GO/G1 phase that represents cells
with fractioned DNA, the stage of the cycle, before the cells undergo
actual apoptosis. Several pyranocoumarins to include nordentatin,
clausarin and xanthoxyletin from the Rutaceae family inhibit cancer
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Table 3
Analysis of apoptosis related pathway proteins in clausenidin-treated hepG2 cells.

Proteins Fold Regulation  Full name
change

Bad 2.77 Up Bcl 2 associated death promoter

Bax 2.50 Up Bcl-2 associated X protein

Bcl-2 -1.30 Down B-cell lymphoma 2

Bel-x -2.60 Down B-cell lymphoma x

Procaspase 3 -2.17 Down Pro cysteine aspartic acid
protease 3

Cleaved caspase 3~ 2.29 Up Cleaved cysteine aspartic acid
protease 3

Catalase 2.16 Up Catalase

cIAP-1 1.87 Up Cellular inhibitor of apoptosis 1

cIAP-2 2.12 Up Cellular inhibitor of apoptosis 2

Claspin 1.86 Up Claspin

Clusterin 1.38 Up Clusterin

Cytochrome C 4.09 Up Cytochrome C Complex

cell growth in similar manner (Su et al., 2009).

Clausenidin treatment had caused mitochondrial membrane depo-
larization of the hepG2 cells. Depolarization of the mitochondrial
membrane is sine qua non for apoptosis to occur via the intrinsic
pathway (Arbab et al., 2013). During apoptosis, mitochondrial mem-
brane potential is frequently disrupted due to the formation of
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permeability transition pores or due to the insertion of pro-apoptotic
proteins, such as bid or bax, in the mitochondrial membrane that
prompts apoptosis (Zamzami and Kroemer, 2003). Clausenidin could
have triggered the insertion of these pro-apoptotic proteins into the
hepG2 mitochondrial membrane pores since the result of the proteins
profile assay reveals significant increase in the expression of the pro-
apoptotic proteins, Apaf-1, JNK, Bax, cyt ¢, with a concomitant
decrease in the expression of the anti-apoptotic proteins, Bcl-2 and
Bcl-x. The alteration in the fine balance between pro and anti-apoptotic
proteins along with mitochondrial release of cytochrome c that subse-
quently activates caspases 3 and 9 result in apoptosis (Liu et al., 1996,
Kluck et al., 1997, Yang et al., 1997, Jiirgensmeier et al., 1998).

Most anticancer drugs induce apoptosis in cancer cells via the
activation of cytochrome c/caspase 9 pathways or by affecting the
mitochondrial membrane (Kaufmann and Earnshaw, 2000, Preston
et al., 2001). This effect was observed with clausenidin on hepG2 cells.
Clausenidin caused significant increase in the levels of caspases 3 and 9
in hepG2 cells. Caspase 3 is an executioner caspases of apoptosis,
exerting its effect via selective destruction of subcellular structures,
organelles or even the genome (Hanahan and Weinberg, 2000).
Caspases are known to cleave different proteins in order to ensure
the irreversibility of apoptosis (Fleischer et al., 2006). The elevation of
caspases 9 and 3 levels as observed in this study strongly suggests that
clausenidin-induced apoptosis is not only via stimulation of the
mitochondria pathway but also involves destruction of cellular struc-
tures imperative for cell survival.

To further corroborate our findings, we conducted a gene expres-
sion studies and it was shown that clausenidin induces upregulation of
pro-apoptotic Bax genes and a downward regulation of the anti-
apoptotic Bcl-2 gene, which are consistent with equivalent expressions
of the respective proteins. In the mitochondrial activated apoptosis,
JNK is known to mediate in the interaction between Apaf-1 and
cytochrome c to form the apoptosome complex that activates upstream
and downstream caspases for eventual execution of apoptosis
(Marsden et al., 2002). Clausenidin caused increased expression of
the apoptosome complex genes, showing unequivocally the involve-
ment of the mitochondria in its apoptotic effect on the hepG2 cells. The
attempt by the hepG2 cells to induce expression of Bcl 2 gene to
sufficiently block apoptosis was effectively prevented by clausenidin.

In conclusion, the study reveals that clausenidin is a potential
alternative to existing drugs in the treatment of hepatocellular carci-
noma. The anticancer effect of clausenidin is suggested to be multi-
faceted, by induction of intrinsic pathway of apoptosis and G2/M cell
cycle arrest, formation of apoptosome complex, destruction of cell-
maintenance organelles and structures, and obstructing cancer cell
survival mechanisms.
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